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ABSTRACT:
When n animal calls are passively detected at n different times, the number of animals producing the sounds is

anywhere between one and n unless more information is available. When extremely reliable confidence intervals of

location are also available for each call, the upper bound is still n, but a lower bound can be derived. The lower

bound exceeds one when it is physically impossible for an animal to travel quickly enough to go from one reliable

location to another within the temporal call interval. When many calls are detected, it may be too complicated or

numerically prohibitive to determine the minimum number of animals responsible for the calls in space and time by

inspection or brute force methods. Instead, it is advantageous to use graph theory. The lower bound for the number

of calling animals can be derived using 100% confidence intervals of each call’s location. Mathematical theorems

guarantee the lower bound is correct: a lesser value is impossible to obtain. Guaranteed bounds for the abundance of

calling animals are useful for conservation in the presence of environmental stress and studying behavior.
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I. INTRODUCTION

If we hear n animal calls, we only know we heard 1 to n
animals unless other information is available. For example,

suppose we listen to recordings from an omnidirectional

hydrophone, where non-overlapping calls from five bearded

seals are heard. If we know nothing about the source level

of seal calls or their rate of calling, we know the number of

seals detected is from one to five. The problem we solve,

perhaps for the first time, is how to derive a certifiably cor-

rect lower bound for the calling abundance (number of call-

ing animals) when each call is reliably located. The

guarantee is provided via mathematical theorems. To this

end, we ask if two calls come from the same animal. If the

animal can travel quickly enough to go the minimum dis-

tance between the two localizations during the calling inter-

val, we know we could have heard one or two animals;

otherwise, we know we heard two. It is, therefore, of critical

importance to have an extremely reliable 100% confidence

interval of location (CIL). With 100% CIL, the minimum

distance between two call locations and minimum speed

needed to traverse this distance can be computed with the

corresponding temporal interval between calls.

One method for locating animal sounds is to plot a point

at some location without error bounds (Swartz et al., 2003).

Using this process, the probability that the animal’s location

actually intersects this point is small. Using the methods

described by Spiesberger (2003, 2012, 2005, 2020a,b), we

will use 100% CIL, and the animal is guaranteed to be

within the CIL. It is important to note the methods devel-

oped and described in this paper reveal nothing about the

upper bound of calling abundance because there could have

always been n calling animals if no other information is

available. We are not advocating a single value of calling

abundance because any single number has a low probability

of being correct. However, the range between lower and

upper bounds is mathematically guaranteed to contain the

true calling abundance. This guarantee is valid only when

using 100% CIL for the location. Population abundance is

always equal to or greater than the calling abundance

because some animals may be silent. Translating calling
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abundance to population abundance is outside the scope of

our current thinking, although others consider it, e.g.,

Marques et al. (2013) and Thomas and Marques (2012).

The advantages of passively monitoring animal sounds

in the ocean and atmosphere for the purposes of conserva-

tion and understanding their behavior have long been known

(Archer et al., 2020; Davis et al., 2017; Hannay et al., 2013;

Marques et al., 2013; Moore et al., 2006; Opzeeland and

Hillebrand, 2020; Parijs et al., 2001; Stafford et al., 2013;

Thomas and Marques, 2012). The ocean is particularly well

suited for sound monitoring because calls at a few hundred

Hertz can be detected at tens to hundreds of kilometers, and

it is often difficult and expensive to observe animals by

other means. Reliable bounds of calling abundance are use-

ful for monitoring the population size and changes in loca-

tion with time in the presence of environmental or

anthropogenic stressors. These bounds can also influence

national and international policies regarding endangered and

protected species. For example, there are an estimated 30

right whales remaining in the eastern North Pacific (Wade

et al., 2010). Suppose the mathematically guaranteed lower

bound yields 60. This might further impact policy protection

and monitoring.

Estimating the abundance of calling animals is the sub-

ject of hundreds of articles and books (e.g., see Marques

et al., 2013; Thomas and Marques, 2012, for a review); no

attempt is made here to summarize all of the important con-

tributions. Distance sampling is a method wherein estimated

distances to calling animals are related to the probability of

detection, and assumptions are employed to estimate the

abundance (Buckland et al., 1993; Marques et al., 2013).

The probability of detection generally decreases with dis-

tance as the received signal becomes weaker. Distance can

be estimated in several ways, including crossing of direc-

tional data from two or more receivers (Thode et al., 2012)

and matched-field processing (Wiggins et al., 2004). The

mark-recapture method can be used to estimate density

when individuals can be recognized from their calls and

even when they are not recognizable from their calls

(Marques et al., 2012). In the latter case, calls are detected

(captured) on one receiver and also detected (captured) on

another receiver. The history of captures provides informa-

tion on the abundance without locating or recognizing

individuals.

If the location of a call is computed by any means, the

abundance can be estimated with the spatially explicit

capture-recapture method. The abundance is sometimes

computed by multiplying detection counts by empirical fac-

tors (McDonald, 2006; Mellinger, 2014). These factors may

include the relationship between the number of calling ver-

sus non-calling animals, false detections, cue-counting, and

cue-rate. The calling abundance has been estimated with

measurements of the acoustic bearing angles, received sig-

nal-to-noise ratio, source levels, models of acoustic propa-

gation, and calling rates (Harris et al., 2018).

Some studies estimate the calling abundance with

acoustic and visual data. In one study, bowhead whales were

censused in the Arctic from visual observations and acoustic

arrays (Raftery and Zeh, 1998). They did not attempt to cre-

ate a census from acoustic data only. Acoustically derived

locations were shown as points and they stated “In some

cases it is impossible to know whether different locations

correspond to different whales.” Resolving this ambiguity is

the principal motivation for our research.

There are many ways of locating sounds. The examples

in this paper generate 100% CIL using a call’s time-differ-

ence-of-arrivals (TDOA) from a plurality of widely sepa-

rated receivers using a technique called sequential bound

estimation (SBE; Spiesberger, 2005, 2020a,b, 2003, 2012).

The problem of finding a lower bound from calls is compli-

cated when there are many 100% CIL, and the goal is to

determine the minimum number of animals responsible for

these CILs in space and time (Spiesberger et al., 2019,

2020c). As explained in this paper, 100% CIL makes it pos-

sible to yield a mathematically guaranteed lower bound for

the number of calling animals. This CIL can be computed in

many ways, including via SBE. We briefly summarize why

it is possible to obtain a 100% CIL that is finite and some-

times small.

The 100% CILs are computed with SBE from measure-

ments of the TDOA between pairs of receivers. The finite-

ness of the CIL is possible because all prior probability

distributions for error have finite bounds. Probability distri-

butions with infinite tails are mathematical concepts created

to yield analytically convenient solutions to problems; their

infinite tails are unreal. For example, the location of a

receiver cannot be anywhere: it is always possible to know

it is in a finite region of space with 100% confidence. SBE

imposes finite bounds for all prior probabilities of variables

contributing to the error of location, and the 100% CIL can

be small compared with the size of the receiving array

(Spiesberger, 2005). The novel aspects in this paper are

unrelated to SBE. The novelty stems from a means to esti-

mate the certified lower bound for the calling abundance

using 100% CIL.

Section II discusses the mathematical problem of esti-

mating a lower bound. The solution is derived using theo-

rems from graph theory. It is not possible to explain the

derivations of the theorems within the confines of a single

journal paper. Consequently, we make no such attempt and

instead list the approaches and provide references so readers

know where to look to seek understanding. A few concepts

are presented to provide an introduction for how the prob-

lems are approached. Section III presents simulations based

on graph theory. The approach is then applied to marine

mammal calls recorded in the Chukchi Sea in Sec. IV, fol-

lowed by a discussion in Sec. V.

II. LOWER BOUND FOR NUMBER OF CALLING
ANIMALS

Suppose n calls occur at times ti; i ¼ 1; 2; 3;…; n and

their 100% CIL, li, are derived from each. Set t1 ¼ 0, so the

ti are the elapsed times. The minimum distance between li
and lj is dij. The minimum speed needed for an animal to
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travel between li and lj is vij ¼ dij=jti � tjj. Let v̂ be the max-

imum speed of an animal. The only possible call-pairs

belonging to the same animal obey

vij � v̂ ; i 6¼ j: (1)

In the parlance of graph theory, a pair of call numbers is

“comparable” if they obey Eq. (1). Because of the triangle

inequality (Euclid et al., 2002), if (i,j) and (j,k) are compara-

ble, then (i,k) is comparable. In the context of this paper, the

triangle inequality states the sum of the lengths of any two

sides of a triangle exceeds the length of the third side.

Let A be the set of all call numbers, 1; 2; 3;…; n. Let C
denote the set of all call numbers from comparable pairs,

and assume the values in C are unique. Let C0 denote the

call numbers from A not in C, and let there be nc elements in

C0. Each of the nc calls must have come from different ani-

mals. These are easy to identify. However, the minimum

number of animals responsible for the calls in C is not as

easy to identify.

This problem’s difficulty is made apparent by analyzing

the number of possible ways to find a minimum number

through an exhaustive calculation. Suppose 100 calls are

emitted at different times. It is possible to estimate which

calls are comparable with others. Imagine the location of the

first call is comparable with 20 other call locations, the sec-

ond call is comparable with 42 other call locations, the third

call is comparable with 30 other call locations, a fourth call

is comparable with 19 other call locations, and so forth. A

brute force method might start with the hypothesis that there

is only one animal, but we can easily exclude its possibility

when at least two calls are incomparable. In our example,

the first call location is incomparable with 80% of the 100

call locations, therefore, one animal could not have pro-

duced all of the sounds. Next, the brute force method

hypothesizes there are two animals and attempts to deter-

mine if there is a starting location where each of the two ani-

mals could travel fast enough to reach (between them) each

of the 100 locations. The two-animal hypothesis is not as

easy to check as the one-animal hypothesis. We know the

first call is associated with one of the animals, but we do not

know the earliest call associated with the second animal. If

calls from two animals have other call numbers in common,

we must try all of the possible ways to share these other

calls between two animals and see if all of the 100 calls can

be explained by any assignment among comparable pairs so

all 100 locations can be reached exactly once by exactly one

animal. Even if we refute the two-animal hypothesis, we

must proceed to hypothesizing three animals, then four, and

so on until we find the minimum number of animals and

their associated tracks wherein the locations corresponding

to each of the 100 calls are visited by exactly one of those

animals. Moreover, just because the first four calls, in our

example, are comparable with more than 100 locations col-

lectively does not mean it is possible to initiate a disjoint

path from each and still cover all 100 locations at the times

specified. The number of checks required to implement a

brute force technique is a problem whose number of possi-

bilities is n! (n-factorial). Hence, for example, with 100 call

locations, we are dealing with a problem with 100! possibili-

ties or 9� 10157. The brute force method, therefore, is not

feasible with any computer except in cases with a very small

number of calls or in other idealized cases.

One practical way to solve this problem is to use graph

theory (Cormen et al., 2009; Wilson, 1986; Erickson, 2019).

This mathematical subject deals with issues of combinatorics.

The origin of this mathematics is interesting. In 1741, Euler

visited Konigsberg, Prussia. This city had seven bridges con-

necting the city across waterways. Residents used to make a

game of seeing if it was possible to leave their home, cross

each bridge exactly once, and then return home. No one suc-

ceeded, and Euler developed a mathematical approach proving

its impossibility (Euler, 1741). His approach involved the

invention of graph theory. Considerable progress has been

made in this field since 1741; new theorems are published

every year. In this subsection, we summarize how modern

results from graph theory may be used to estimate the lower

bound for the calling abundance. Detailed explanations of the

pertinent theorems are provided in the references.

We explained how two calls are either comparable or

incomparable. In graph theory, this information is summa-

rized in an adjacency matrix (Cormen et al., 2009). It is

used for simple and complicated cases and sometimes dis-

played when it is small. If n calls are detected, the adjacency

matrix has n rows and n columns. In our adjacency matrix,

the elements in row i and column j are shown as i,j if the

calls are comparable. If incomparable, a dash is placed at

this row and column. We only show values in the upper-

triangular half because the matrix is symmetric, and there

are no values on the diagonal. The symmetry of the matrix

is due to the fact that it only contains information about the

comparability of two calls: if calls 1 and 2 are comparable,

then calls 2 and 1 are comparable. Comparability does not

contain information about time-ordering. Figure 1 is an

adjacency matrix derived from the calls of two animals

whose simulated call times and locations are based on the

simulation discussed below in Sec. III A. There are N ¼ 12

calls, and all of the call numbers appear in the matrix, hence,

C0 is empty. In our example, the animal can swim fast

enough to go from the location of call 1 to the location of

call 3 but not fast enough to go from the location of call 1 to

the location of call 4 (Fig. 1).

Under ideal conditions, the calls naturally establish a

temporal ordering, so we know if calls one and two are

heard ten minutes apart, and if they are comparable, then the

animal could have swum from the CIL of 1 to 2 but not vice

versa. In graph theory, the times of the calls and their associ-

ated locations can be thought of as a partially ordered set

(POSET; Cormen et al., 2009).

The Hasse diagram is another tool from graph theory

whose presentation can make it easier to visually determine

the desired lower bound when there are not many calls. The

Hasse diagram displays the POSET: it contains the compa-

rability information from the adjacency matrix plus the

1498 J. Acoust. Soc. Am. 150 (2), August 2021 Spiesberger et al.

https://doi.org/10.1121/10.0004994

https://doi.org/10.1121/10.0004994


time-ordering between comparable calls. For the two-animal

simulation (Fig. 1), the Hasse diagram plots the locations of

the calls as “vertices” and paths connect the comparable ver-

tices with time flowing up along the paths connecting the

comparable vertices (Fig. 2). Arrows show the directions of

these so-called directed paths. The diagram conveys the

temporal call ordering between comparable vertices by plac-

ing vertices associated with earlier call times at lesser values

on the vertical axis. The vertical positions of the incompara-

ble vertices are somewhat arbitrary. For example, vertices 1

and 2 are incomparable and could be plotted with the same

vertical coordinate, as shown, or different vertical coordi-

nates (e.g.,1 above 2 or 2 above 1), but vertices 1 and 2 must

both be below vertex 4 because vertices 1 and 4 are compa-

rable and vertices 2 and 4 are comparable and vertex 4

occurs later than both vertices 1 and 2. All vertices compara-

ble with vertex 2 have time flowing up, and all vertices com-

parable with vertex 1 have time flowing up.

An animal can travel along many different possible

paths. For example, from vertices 3 to 8 and then to vertex

10, which is written as 3, 8, 10. Another directed path is 7,

9, and 12. We see there is no path from vertices 3 to 4

because we cannot go backward in time through call 1, so

calls 3 and 4 are incomparable. This case is simple enough

to see one animal cannot explain all 12 calls because if we

start at call 1, there is no way to get to call 2 and vice versa.

However, we see all 12 vertices can be covered by two ani-

mals. One way to do this is 1, 3, 5, 7, 9, and 11. The other

path is 2, 4, 6, 8, 10, and 12. These two tracks touch each

vertex exactly once. The minimum number of animals

needed to explain all 12 calls is 2. When there are many

more calls, it is usually impossible to determine the mini-

mum number by eye.

Graph theory provides efficient methods to estimate the

minimum number of paths needed to cover each vertex

exactly once. The number of these so-called vertex-disjoint

paths equals the number of vertices, V , in the graph minus

the size of the so-called “maximum-matching”, m, of the

associated bipartite graph (p. 361 of Erickson, 2019). In our

problem, this theorem proves the impossibility of explaining

the data with fewer than V – m animals where V is the num-

ber of located calls. The vertex-disjoint paths are called

tracks in bioacoustics. The approach we chose to obtain the

lower bound of calling animals is as follows. The adjacency

matrix is transformed into a bipartite graph to find all its

maximum matchings. For each maximum matching, we

construct its associated chain partition. Each chain partition

is a subset of vertices, any pair of which are comparable.

The vertices in each chain comprise a vertex-disjoint path

and represent the time-ordered set of calls for a possible

track of a single animal. Each so-called ‘isolated vertex’ of

the bipartite graph is also a chain partition consisting of one

call. The maximum-matching is not necessarily unique.

Enumeration of all the maximum matchings is done using

the method described by Takeaki (1997).

A. Call-time ambiguity

In reality, there is uncertainty in the call time of an ani-

mal, and this should be accounted for to get the minimum call-

ing abundance. The measured arrival times of calls a, b, and c
could be 0, 1, and 2 s, respectively, but this does not mean the

emitted call order is a, b, and c. For this case, suppose that the

calls are emitted at distances of 10, 2000, and 6000 m from

the receiver and the speed of sound is 1500 m/s. The emitted

time of call a is 0-10/1500 ¼ �0.0067 s. Similarly, the emit-

ted times of calls b and c are 1-2000/1500 ¼ �0.033 s and

2-6000/1500 ¼ �2.0 s, respectively. Therefore, the emitted

calling order is c, b, a while the measured arrival order is a,

FIG. 1. Adjacency matrix derived from 2 animals calling at 12 locations

[Fig. 3(A)] at times described in the text. the upper-triangular elements are

filled if the animal can swim fast enough to go between two CILs. For

example, the element 1,3 means that the locations of calls one and three are

close enough. Comparability is determined using a maximum swimming

speed of 10 m/s. The adjacency matrix is symmetric because it tabulates

comparability. If calls 1 and 2 are comparable, then calls 2 and 1 are

comparable.

FIG. 2. The Hasse diagram corresponding to the adjacency matrix in Fig. 1.

Call numbers are in chronological order with arrows indicating increasing

chronological time.

J. Acoust. Soc. Am. 150 (2), August 2021 Spiesberger et al. 1499

https://doi.org/10.1121/10.0004994

https://doi.org/10.1121/10.0004994


b, c. The emitted call order can be determined from the CILs

and possible speeds of sound.

Suppose the measured arrival time of a call is s and the

minimum and maximum distances between the receiver and

its 100% CIL are �D and D̂, respectively. Then, the bounds

for the call’s emission times are

�t ¼ s� D̂=�c; (2)

t̂ ¼ s� �D=ĉ; (3)

where �c and ĉ are the minimum and maximum speeds of

sound, respectively.

Comparability of calls i and j can be determined from

the minimum distance, dij, between their 100% CILs, the

maximum interval of time, T̂ ij, between these calls’ emis-

sion times, and the maximum speed, v̂, of the animal. Calls i
and j are comparable when dij � v̂T̂ ij or, equivalently, when

dij=T̂ ij � v̂. Both the temporal and spatial uncertainties of

the calls are needed to compute comparability.

Call-time ambiguity affects the tracks; if two calls, 1

and 2, have overlapping temporal bounds and are compara-

ble, then one track would have the animal going from the

CIL of call 1 to call 2, and the other track would go from

call 2 to call 1. If the bounds of m calls mutually overlap in

time, the number of all orderings equals m!. For m ¼ 10,

m! � 3:6� 106. Call-time ambiguity potentially leads to a

large number of possible tracks. One scenario yielding ten

overlapping call times occurs if the calls are received from

eight calling dolphins near each other and the 100% CILs

are rather large.

An important question is whether call-time ambiguity

affects the calculation for the minimum number of calling

animals. If it does, then it might be necessary to estimate the

minimum number by applying graph theory m! times, once

for each temporal ordering of calls. However, we provide a

proof that the minimum number of calling animals is the

same for all m! cases. In other words, we prove the mini-

mum number is independent of the ordering of calls whose

call times are ambiguous. The minimum calling abundance

can be determined from any one of the millions of cases—a

desirable outcome.

Proof: Changing the temporal order of time-ambiguous

calls does not change their comparability. In other words, if

calls j and k are comparable, then calls k and j are comparable

because switching the order does not change djk=T̂ jk. Also,

note, if calls j and k are incomparable, they are still incompa-

rable after any time-ambiguous calls are switched because

djk=T̂ jk does not change. Thus, switching the order of time-

ambiguous calls does not change the comparability or incom-

parability for all pairs of calls. Now recall the theorem that

the minimum vertex-disjoint path cover equals V – m [p. 361

(Erickson, 2019)]. Changing the temporal order does not

change the number of calls, V, nor does it change the size of

the maximum matching, m, since a change of time-ordering

of time-ambiguous calls is nothing more than a relabeling of

vertices with the same comparability and incomparability.

Therefore, the minimum number of animals is unchanged.

Q.E.D. We do not know if this proof is novel.

To the best of our knowledge, estimating a lower bound

of the calling abundance from a reliable CIL in space and

time is a novel application of graph theory.

III. SIMULATIONS

We apply graph theory to demonstrate how a lower

bound for calling abundance can be determined. The com-

pilation of of these approaches is called the lower bound

estimator (LBE) in this paper. We used software from pub-

licly available sites for much of our computations in graph

theory (Freese et al., 1995a,b). The software was written to

automatically compute the minimum calling abundance and

possible tracks from the output of the SBE (Spiesberger,

2003, 2012, 2005, 2020a,b). The SBE provides 100% CIL

and has been independently tested with real data by the U.S.

Navy with a multistatic sonar. Its 100% CIL contained the

independently measured location of the target without tun-

ing with data for every 1 of the 100 cases studied

(Spiesberger, 2016).

We estimate a lower bound for the number of calling

animals in an ideal situation in which the locations of each

call are known to occur at points in the horizontal plane and

times of each call are known perfectly. These simulations

reveal how the LBE works in simple circumstances.

A. Two animals

The locations of two animals are simulated, assuming

each has an initial swimming speed randomly chosen in the

interval between 0 and 10 m/s. Their locations are con-

strained to a planar surface. The temporal evolutions of their

locations are generated within specified minimum and maxi-

mum radial and azimuthal accelerations. An animal’s speed

is not allowed to exceed 10 m/s. For simplicity, we assume

each animal calls six times at 200 s intervals [Fig. 3(A)].

The corresponding adjacency matrix and Hasse diagrams

are shown in Figs. 1 and 2. The minimum distance between

each call’s location and the location of every other localized

call is computed with the Pythagorean theorem. In this ide-

alized case, locations are at exactly known points, therefore,

the minimum distance is simple to compute. This adjacency

matrix is inputted into the LBE, yielding two calling animals

[Fig. 3(B)]. In this case, the LBE correctly determines that

there are two calling animals and their tracks.

B. Four animals

Each of four animals calls six times at 200 s intervals

with a swimming speed between 0 and 10 m/s [Fig. 4(A)].

The adjacency matrix is not shown because it is too large.

This matrix is inputted into the LBE, and the LBE correctly

determines four animals can explain the data. The LBE cor-

rectly recovers the tracks for two of the animals [Fig. 4(B),

left two tracks]. Its reconstruction of the two other tracks is

imperfect because it determines that there are more than two

paths that the animals can take to explain the calls on the
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right side of Fig. 4. Without further data, this is the maxi-

mum amount of information to be gleaned from the adja-

cency matrix.

IV. CALLS FROM MARINE MAMMALS

As part of the Chukchi Sea Acoustics, Oceanography,

and Zooplanton (CHAOZ) study, an integrated ecosystem

project funded by an Interagency Agreement between the

National Oceanic and Atmospheric Administration’s

(NOAA’s) Alaska Fisheries Science Center and Pacific

Marine Environmental Laboratory, three passive acoustic

arrays were deployed around a cluster of biophysical moor-

ings off Icy Cape, Alaska. Each array had a pentagonal

arrangement of five subsurface passive acoustic recorder

moorings that were deployed annually for two years

(Mocklin and Friday, 2018). Here, we consider the data

from the inshore array of recorders deployed from

September 2011 through August 2012. Sounds were

recorded on five receivers on the bottom at about 40 m depth

in the Chukchi Sea in 2011 (Fig. 5). The receivers were ori-

ented on the circumference of a circle of diameter about

6 km. Data were digitized at 16 384 Hz and stored on hard

drives. The clocks for each receiver were unsynchronized

and drifted up to about 0.2 s/day. They were synchronized

using sounds from pingers mounted above each receiver.

Extremely reliable 100% CILs were derived from measure-

ments of the TDOA between one receiver and the other four

(Spiesberger et al., 2020b).

A. Bowhead whales

Ten bowhead whale calls are located with 100% CILs

during a 31.057 min interval (Table I, Figs. 6–8). The maxi-

mum swimming speed of a bowhead is set to 10 m/s. This

exceeds the maximum speed of 5.5 m/s that was observed by

others (Mate and Krutzikowsky, 1995) but cleanly illustrates

the principles of estimating a certified lower bound with the

data. Section V discusses how the lower bound depends on

the maximum speed. All ten call numbers appear in the adja-

cency matrix (Fig. 6), thus, C0 as defined in Sec. II is empty,

but we cannot automatically deduce any of the calls are

caused by only one animal because some pairs of calls are

incomparable. The adjacency matrix is fed into the LBE,

yielding two calling animals. The LBE determines that there

are many groupings of calls consistent with two animals. In

one grouping, the first bowhead is responsible for calls 1, 2, 7,

8, 9, and 10 (Fig. 8, top). The other is responsible for calls 3,

4, 5, and 6 (Fig. 8, bottom). These associations are evident in

the corresponding Hasse diagram (Fig. 7). The supplementary

material shows an animation of these ten 100% CILs.1

V. DISCUSSION

We introduced the concept of estimating a reliable

lower bound for the number of animals responsible for the

FIG. 3. (A) The true tracks of two animals (lines). Dots indicate the loca-

tions for each of 12 labeled calls. (B) The LBE determines that two is the

lower bound for the number of calling animals where two dots indicate the

starting locations for each animal.

FIG. 4. (A) The same as in Fig. 3 except that there are four calling animals.

(B) The LBE determines that 4 is the fewest number of animals responsible

for the times and locations of the 12 calls. The four dots indicate the starting

locations for each of the four animals.

FIG. 5. The location of the receivers (five dots northwest of center) from

the inshore array of the CHAOZ experiment (Mocklin and Friday, 2018).
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recorded calls when their reliable locations are available.

Without reliable locations and other information, we would

only know that the number of animals responsible for n
detected calls is any integer from one to n. Reliable loca-

tions introduce more information because it may be impossi-

ble for an animal to travel quickly enough to go from one

reliable CIL to another during the associated call interval.

The simplest invocation of our approach involves adopting

one constraint: the maximum speed of the animal’s travel.

The maximum speed is almost always known, but any

uncertainty in the maximum speed is resolved by increasing

its value until reaching a unanimous consensus. In this

sense, the approach does not depend on quantities that may

or may not be well known such as the calling rate or calling

source level. In the absence of reliable prior probability dis-

tributions for animal acoustic behaviors, such as calling

rates and source levels, our approach offers a robust method

for estimating the fewest number of calling animals using

only the knowledge of its maximum speed of travel. When

the lower bound is derived with 100% CIL, graph theory

provides a proof that the lower bound is correct: fewer call-

ing animals are incapable of causing the observations.

Other variations exist for using an animal’s traveling

speed to derive a lower bound of calling abundance. One

approach is to let the maximum speed be a function of the

temporal interval between emitted calls. An animal might

travel at a faster speed for a short duration. This information

can be used when computing the adjacency matrix. The

lower bound of the calling abundance must stay the same or

increase as the swimming speed decreases because locations

reachable at faster speeds may be unreachable at slower

speeds.

Another approach uses a probability distribution of

swim-speed to derive a probability distribution of the lower

bound of the calling abundance. For example, suppose the

upper bound of the swim-speed is assigned a uniform distri-

bution on the interval from 5 to 6 m/s. The interval is subdi-

vided at increments of 0.25 m/s, yielding five hypothesized

maximum swim-speeds: 5, 5.25, 5.5, 5.75, and 6 m/s, each

assigned a probability of 0.2. For each, a lower bound is

derived for the calling abundance, yielding 13, 13, 12, 9,

and 8 animals, respectively. Because 13 animals occur for

both 5.0 and 5.25 m/s, its probability is 0.2þ 0.2¼ 0.4. The

remaining lower bounds of the calling abundance are associ-

ated with a probability of 0.2 as 12, 9, and 8 occur once.

A reader may be puzzled if there are many calls and the

lower bound is one. An implausible picture of a single ani-

mal may come to mind where it zigzags from point-to-point.

The paradox is solved by realizing that locations cannot be

points but are 100% CIL (Fig. 8). With a lower bound of

one, these CILs are usually large and often overlap, and a

lower bound of one makes sense. The lower bound for the

calling abundance stays the same or increases toward the

true calling abundance as the 100% CIL decreases. CILs can

TABLE I. The elapsed times of ten bowhead whale calls arriving at

receiver one of the inshore array (second column). The arrival time of call 1

is 1 Nov 2011 at 14:11:6.7 GMT. The third column is bounds of call emis-

sion times derived from 100% CILs and bounds for the speed of sound. The

adjacency matrix is shown in Fig. 6.

Call number

Received elapsed

time (min)

Derived elapsed call

time bounds (min)

1 0 [�0.283,�0.226]

2 0.075 [�0.464,�0.406]

3 3.981 [3.724,3.775]

4 5.543 [5.282,5.333]

5 8.161 [7.710,7.764]

6 20.238 [19.957,20.013]

7 20.997 [20.680,20.736]

8 21.095 [20.760,20.819]

9 21.172 [20.715,20.770]

10 31.057 [30.701,30.762]

FIG. 6. The adjacency matrix for ten bowhead whale calls whose 100%

CILs and elapsed calling times are shown in Fig. 8 and Table I,

respectively.

FIG. 7. The Hasse diagram for ten bowhead whale calls tabulated in

Table I. Time-ambiguous calls are calls 7, 8, and 9, which are marked with

an asterisk.
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be made to decrease by adding acoustic receivers or improv-

ing the accuracy of the associated acoustic measurements.

It is usually impractical to determine the minimum

number of animals responsible for the calls by checking all

possibilities even with a supercomputer. The Hasse diagram

provides a good way to visualize the lower bound when

there are few enough calls (Fig. 2). We show how graph the-

ory offers a computationally practical approach for deriving

a lower bound for the calling abundance when their loca-

tions are reliably located in space and time (Cormen et al.,
2009; Erickson, 2019).

We create reliable CILs from passive measurements of

the TDOA among at least three receivers (Spiesberger,

2003, 2012, 2005, 2020a,b). Reliable CILs could be made

by other means, including intersecting acoustic beams and

estimating lower and upper bounds of distances from single

receivers.

The analysis provided in this paper uses 100% CIL.

Analysis could be done with a lesser confidence interval, but

this would remove the mathematical certainty of the lower

bound. There is, perhaps, a subtle reason for not wishing to

use a lesser CIL. The derivation of this lesser value, e.g.,

90%, is only meaningful if it is the correct 90% CIL. In the

perspective of Bayesian analysis, the derived CIL depends

on the prior distribution of variables affecting the location.

For example, the practitioner is required to impose a prior

probability for the error in a receiver’s location. This is

almost never known, therefore, when the Bayesian approach

requires its use, an error is introduced into the analysis right

from the start. The only way a Bayesian approach can cor-

rect this self-imposed error is to have enough data to over-

come the error with data-adaptive methods. For most

bioacoustic experiments, there are often insufficient data to

overcome the errors in the priors. The most important moti-

vation for the invention of the SBE is its insensitivity to

errors in prior distributions (Spiesberger, 2003, 2012, 2005).

Instead, the SBE depends only on the prior bounds of the

error, and these prior bounds can always be made large

enough to be true with a confidence of 100%. The experi-

ment described in this paper is an excellent example in

which the prior probabilities of error are unknowable. Thus,

little credence can be assigned to CILs less than 100%.

In the future, these apparently new techniques could be

used to estimate bounds for the calling abundance from

large data sets. The findings in this paper and related topics

are the subject of a U.S. patent (Spiesberger, 2021a,b).
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